cho hình thang ABCD vuông có A = D = 90 độ. AB=7cm, CD=13cm, BD=10cm. đường trung trực của BC cắt AD tại N . Gọi M là trung điểm BC. tính MN
Cho hình thang vuông có \(\widehat{A}\)=\(\widehat{D}\)=90, AB=7cm, DC=13cm, BC=10cm.Đường trung trực BC cắt AD ở N.Gọi M là trung điểm BC.Tính MN
Cho hình vuông ABCD có độ dài cạnh là 10 cm . Gọi O là tâm đường tròn nội tiếp hình vuông. Gọi M, N lần lượt là trung điểm của AB; BC. Tính độ dài của cung M N ⏜ ?
A. 2 π (cm)
B. 5 π (cm)
C. 2,5 π (cm)
D. 7,5 π (cm)
Cho hình thang ABCD vuông tại A và D có AB= 4 cm, CD= 9 cm, BC= 13 cm. Tính khoảng cách từ trung điểm M của AD đến BC
Câu 1:Tính độ dài cạnh AB của tam giác ABC vuông tại A có hai đường trung tuyến AM và BN lần lượt bằng 6 cm và 9 cm.
Câu 2: Cho hình thang cân ABCD, đáy lớn CD=10 cm, đáy nhỏ bằng đường cao, đường chéo vuông góc với cạnh bên. Tính độ dài đường cao của hình thang cân đó.
Câu 3: Cho tam giác ABC cân tại A, đường cao ứng với cạnh đáy có độ dài 15,6 cm, đường cao ứng với cạnh bên dài 12 cm. Tính độ dài cạnh đáy BC.
Câu 4: Cho tam giác ABC vuông tại A, AB<AC; gọi I là giao điểm các đường phân giác, M là trung điểm BC . Cho biết góc BIM bằng 90°. Tính BC:AC:AB.
Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
cho tam giác ABC (\(\widehat{A}=90^O\)) có AB=15cm , BC = 25 cm đường tròn tâm O đường kính AB cắt đường tròn tâm O' đường kính AC tại D . Gọi M là điểm chính giữa của cung nhỏ DC , AM cắt đường tròn tâm O tại N , cắt BC tại E
a) tính diện tích tam giác ABC
b) tính chu vi tam giác ADB
c) chứng minh 3 điểm O,N,O' thẳng hàng
d) gọi I là trung điểm của MN . chúng minh \(\widehat{OIO'}=90^0\)
Cho hình thang vuông ABCD \(\left(\widehat{A}=\widehat{D}=90\right)\)có \(\widehat{BMC}=90\)với M là trung điểm của AD. Chứng minh rằng:
a) AD là tiếp tuyến của đường tròn có đường kính BC.
b) BC là tiếp tuyến của đường tròn có đường kính AD.
Cho hình thang vuông ABCD \(\widehat{A}=\widehat{D}=90^0\) , tia phân giác của góc C đi qua trung điểm I của AD.
a, CMR: BC là tiếp tuyến của đường tròn (I; IA) tại điểm H.
b, Cho AD = 2a . Tính tích AB . CD theo a.
c, Gọi K là giao điểm của AC và BD. CMR: KH // CD.