DN

Cho hình thang cân ABCD (AB//CD) có c=60°,BD là tia phân giác của góc D,EFlà đường trung bình của hình thang ABCD.Tính EF biết AD=3cm,BD=4cm

NM
28 tháng 9 2021 lúc 16:50

Ta có \(\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\)

Mà \(\widehat{D_2}=\widehat{B_1}\left(so.le.trong.vì.AB//CD\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{B_1}\Rightarrow\Delta ADB.cân.tại.B\)

\(\Rightarrow AD=AB=3\left(cm\right)\)

Ta có \(\widehat{ADC}=\widehat{BCD}=60^0\left(hthang.cân.ABCD\right)\)

\(\Rightarrow\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{ADC}=30^0\left(t/c.phân.giác\right)\)

Ta có \(\widehat{BDC}+\widehat{D_2}+\widehat{BCD}=180^0\Rightarrow\widehat{BDC}=180^0-30^0-60^0=90^0\)

Do đó \(\Delta BCD\) vuông tại B

\(\Rightarrow CD^2=BD^2+BC^2\left(pytago\right)\\ \Rightarrow CD^2=BD^2+AD^2\left(t/c.hthang.cân\right)\\ \Rightarrow CD^2=3^2+4^2=25\\ \Rightarrow CD=5\left(cm\right)\)

Vì EF là đtb hình thang cân ABCD nên \(EF=\dfrac{AB+CD}{2}=\dfrac{5+3}{2}=4\left(cm\right)\) 

 

Bình luận (0)
NM
28 tháng 9 2021 lúc 16:51

quên sửa hình vẽ nhé: 

Bình luận (1)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
JM
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết