Cho hình thang ABCD (AB//CD). M, N thuộc các cạnh
AD, BC sao cho MN//AB. Gọi I, J, K lần lượt thuộc AB, CD, MN
sao cho \(\frac{AI}{BI}\)=\(\frac{DJ}{CJ}\)=\(\frac{MK}{NK}\)
a) Chứng minh ba điểm I, J, K thẳng hàng.
b) Chứng minh AD , BC, IJ đồng quy.
Cho hình thang cân ABCD (AB//CD), AB<CD). AD cắt BC tại O
a) chứng minh rằng tam giác OAB cân
b) Gọi I,J lần lượt là trung điểm của AB và CD. Chứng minh rằng ba điểm I,J,O thẳng hàng
c) Qua điểm M thuộc cạnh AC vẽ đường thẳng song song với CD, cắt BD tại N. Chứng minh rằng MNAB và MNDC là các hình thang cân
Bài 8 : Cho hình thang ABCD (AB//CD) có CD = 2AB. Gọi M, N, I lần lượt là trung điểm của AD, BC, DC. Gọi K là giao điểm của MN và AC. a/ Chứng minh K là trung điểm của AC. b/ Chứng minh AB = MK. c/ Chứng minh B, K, I thẳng hàng.
cho hình thang cân ABCD (AB//CD) AB<CD . AD cắt BC tại O
a) chứng minh tam giác AOB cân
b)gọi I , J lần lượt là trung điểm của AB và CD . Chứng minh I, J, O thẳng hàng .
c)Qua M thuộc AC vẽ đường thằng sog song CD cắt BĐ tại N . chứng minh tứ giác MNAB , MNDC là hình thang cân
Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. a) Chứng minh rằng MNPQ là hình bình hành b) Gọi I, J lần lượt là trung điểm của AC và BD. Chứng minh rằng các đoạn thẳng MP, QN, IJ đồng quy tại một điểm.
Cho hình bình hành ABCD và điểm E nằm cạnh AB. I,K là các trung điểm cạnh AD và BC. Gọi các điểm M,N lần lượt đối xứng với điểm E qua điểm I và K
a) chứng minh M,N thuộc đường thẳng CD
b) chứng minh MN=2CD
Cho hình vẽ, biết AB // CD và AB = CD.
a) Chứng minh BC // AD và BC = AD
b) AC cắt BD ở O. Chứng minh O là trung điểm của AC và BD.
c) Gọi M, N lần lượt là trung điểm của AB và CD. BD trát CM và AN lần lượt tại I và J. Chứng minh BI = IJ = JD
Cho hình thang ABCD (AB//CD). M, N thuộc AB, CD sao
cho AM =2 MB , DN = 2 NC. Chứng minh ba đường thẳng AD,
BC, MN đồng quy
Cho hình thang ABCD (AB//CD). M, N thuộc AB, CD sao
cho AM =2 MB , DN = 2 NC. Chứng minh ba đường thẳng AD,
BC, MN đồng quy