Hình học lớp 8

CR

cho hình thang ABCD (AB song song vs CD)

E, F lần lượt là trung điểm AB, CD

O là trung điểm EF

Qua O kẻ đường thẳng song song vs AB cắt AD, BC tại M, N

a) EMFN là hình gì?

b) ABCD thêm điều kiện gì để EMFN là hình thoi?

c) ABCD thêm điều kiện gì để EMFN là hình vuông?

NT
22 tháng 11 2022 lúc 22:25

a) Ta có: AB//CD(gt)

mà E∈AB và F∈CD

nên AE//DF và EB//FC

Xét tứ giác AEFD có AE//DF(cmt)

nên AEFD là hình thang có hai đáy là AE và DF(Định nghĩa hình thang)

Hình thang AEFD(AE//DF) có 

O là trung điểm của EF(gt)

OM//AE//DF(MN//AB//DC, E∈AB, O∈MN, F∈DC)

Do đó: M là trung điểm của AD(Định lí 3 về đường trung bình của hình thang)

Xét tứ giác BEFC có BE//FC(cmt)

nên BEFC là hình thang có hai đáy là BE và FC(Định nghĩa hình thang)

Hình thang BEFC(BE//FC) có 

O là trung điểm của EF(gt)

ON//EB//FC(MN//AB//DC, E∈AB, O∈MN, F∈CD)

Do đó: N là trung điểm của BC(Định lí 3 về đường trung bình của hình thang)

Xét ΔABD có 

M là trung điểm của AD(cmt)

E là trung điểm của AB(gt)

Do đó: ME là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒ME//BD và NF=BD2NF=BD2(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra ME//NF và ME=NF

Xét tứ giác EMFN có ME//NF(cmt) và ME=NF(cmt)

nên EMFN là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Xét ΔBAC có 

E là trung điểm của AB(gt)

N là trung điểm của BC(cmt)

Do đó: EN là đường trung bình của ΔBAC(Định nghĩa đường trung bình của tam giác)

⇒EN//AC và EM=BD2EM=BD2(cmt) và 

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
HA
Xem chi tiết
DD
Xem chi tiết
VH
Xem chi tiết
TT
Xem chi tiết
HG
Xem chi tiết
KD
Xem chi tiết
PM
Xem chi tiết
NH
Xem chi tiết