Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TC

Cho hình thang ABCD (AB // CD, AB > DC) . Tia phân giác các góc A và D cắt nhau tại E; tia phân giác các góc B và C cắt nhau tại F.
a) Tính số đo các góc AED, BFC
b) Giả sử AE và BF cắt nhau tại P nằm trên cạnh DC. C/m: AD + BC = DC
c) Với giả thiết ở câu b, CMR EF nằm trên đường trung bình của hình thang ABCD

NM
3 tháng 9 2020 lúc 10:07

a/

\(\widehat{DAE}=\frac{\widehat{A}}{2};\widehat{ADE}=\frac{\widehat{D}}{2}\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}\)

Mà \(\widehat{A}+\widehat{D}=180^o\) (Vì AB//CD nên ^A và ^D là 2 góc trong cùng phía nên bù nhau)

\(\Rightarrow\widehat{DAE}+\widehat{ADE}=\frac{\widehat{A}+\widehat{D}}{2}=\frac{180^o}{2}=90^o\) 

Xét tg ADE có ^DAE+^ADE=90 => ^AED=180-(^DAE+^ADE)=180-90=90

Chứng minh tương tự cũng có ^BFC=90

b/

Xét tg ADP có DE là phân giác cua ^D

^AED=90 => DE vuông góc với AP

=> DE vùa là phân giác vừa là đường cao => tg ADP cân tại D => AD=DP

Chứng minh tương tự cũng có tg BPC cân tại C => BC=CP

=> AD+BC=DP+CP=DC

c/

Xét tg cân ADP có DE là đường cao => DE là đường trung trực thuộc cạnh AP => AE=PE

Chứng minh tương tự với tg cân BPC => BF=PF

=> EF là đường trung bình của tg ABP (đường thẳng đi qua trung điểm 2 cạnh của 1 tg là đường trung bình)

=> EF//AB//CD

Xét tg ADP có EF//CD và AF=PF => EF là đường trung bình của tg ADP => EF đi qua trung điểm của AD

Chứng minh tương tự cuãng có EF đi qua trung ddiemr của BC

=> EF là đường trung bình của hình thang ABCD

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TC
Xem chi tiết
H24
Xem chi tiết
LL
Xem chi tiết
LN
Xem chi tiết
NX
Xem chi tiết
HD
Xem chi tiết
ND
Xem chi tiết
TC
Xem chi tiết
NL
Xem chi tiết