Chọn đáp án B
Áp dụng công thức, thể tích khối tròn xoay thu được là:
Chọn đáp án B
Áp dụng công thức, thể tích khối tròn xoay thu được là:
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f ( x ), trục hoành và hai đường thẳng x = a, x = b ( a > b ). Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức
A. V = π ∫ a b f 2 x dx
B. V = 2 π ∫ a b f 2 x dx
C. V = π 2 ∫ a b f 2 x dx
D. V = π 2 ∫ a b f x dx
Cho hàm số y=f(x) liên tục trên đoạn [a;b]. Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x) trục hoành và hai đường thẳng x=a, x=b (a<b). Thể tích của khối của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:
A. V = π ∫ a b f 2 x dx
B. V = 2 π ∫ a b f 2 x dx
C. V = π 2 ∫ a b f 2 x dx
D. V = π 2 ∫ a b f x dx
Cho hàm số y = f(x) liên tục trên đoạn [a; b]. Gọi D là hình phẳng giới hạn bởi đồ thị của hàm số y = f(x) trục hoành và hai đường thẳng x = a , x = b a < b . Thể tích của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức
A. V = π ∫ a b f 2 x d x
B. V = π 2 ∫ a b f 2 x d x
C. V = π 2 ∫ a b f x d x
D. V = 2 π ∫ a b f 2 x d x
Cho hình phẳng trong hình bên (phần tô đậm) quay quanh trục hoành. Thể tích khối tròn xoay tạo thành được tính theo công thức nào trong các công thức sau đây?
A. V = π ∫ a b g 2 x - f 2 x dx
B. V = π ∫ a b f 2 x - g 2 x dx
C. V = π ∫ a b f x - g x 2 dx
D. V = π ∫ a b f x - g x dx
Cho hàm số y=f(x) liên tục trên đoạn a ; b và f(x)>0 ∀ x ∈ a ; b Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y=f(x), trục hoành và 2 đường thẳng x=a, x=b (a<b). Thể tích của vật thể tròn xoay khi quay D quanh Ox được tính theo công thức
A. ∫ a b f ( x 2 ) d x
B. π ∫ a b f ( x 2 ) d x
C. π ∫ a b [ f ( x ) ] 2 d x
D. ∫ a b [ f ( x ) ] 2 d x
Cho hàm số f(x) thỏa mãn f ' x 2 + f x . f " x = 2018 x ∀ x ∈ R và f(0) = f’(0) = 1. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số f(x), trục hoành và hai đường thẳng x = 0; x = 2. Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox.
A. V = 8090 3 2
B. V = 4036π
C. V = 8090 3 π
D. V = 8090π/3
Cho hàm số y = f x liên tục trên đoạn a ; b . Gọi D là hình phẳng giới hạn bởi đồ thị hàm số y = f x , trục hoành và hai đường thẳng x = a , x = b a < b . Thể tích của khối của khối tròn xoay tạo thành khi quay D quanh trục hoành được tính theo công thức:
A. V = π ∫ a b f 2 x d x .
B. V = 2 π ∫ a b f 2 x d x .
C. V = π 2 ∫ a b f 2 x d x .
D. V = π 2 ∫ a b f x d x .
Cho hàm số f(x) thỏa mãn f ' x 2 + f x f ' ' x = 2018 x , ∀ x ∈ ℝ và f 0 = f ' 0 = 1 . Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số f(x), trục hoành và hai đường thẳng x = 0 , x = 2 . Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox.
A. V = 8090 3 2 π
B. V = 4036 π
C. V = 8090 3 π
D. V = 8090 3 π
Cho (H) là hình phẳng giới hạn bởi parabol y = x 2 và đường tròn x 2 + y 2 = 2 (phần tô đậm trong hình). Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục hoành.
A. V = 5 π 3 .
B. V = 22 π 15 .
C. V = π 5 .
D. V = 44 π 15 .