Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng 2a. Thể tích của khối nón bằng
A. 2 2 π a 3 3 .
B. π a 3 3 .
C. 2 π a 3
D. π a 3 .
Cho hình nón có thiết diện qua trục là một tam giác vuông cân có cạnh góc vuông bằng 2a. Thể tích khối nón đã cho bằng
A. 2 2 π a 3 3
B. 2 2 π a 3
C. 8 2 π a 3 3
D. 2 2 π a 2 3
Thiết diện qua trục của hình nón (N) là tam giác vuông cân có cạnh góc vuông bằng a. Tính diện tích toàn phần của hình nón (N)
A. S t p = π a 2 2 + 2 2
B. S t p = π a 2 2 + 1 2
C. S t p = π a 2 1 + 2
D. S t p = π a 2 1 + 2 2 2
Cho khối nón có thiết diện qua trục là tam giác cân có một góc 120 ° và cạnh bên bằng a . Tính thể tích khối nón
A. π a 3 8
B. 3 π a 3 8
C. π a 3 3 24
D. π a 3 4
Cho hình nón xoay có đường cao h = 4, bán kính đáy r = 3. Mặt phẳng (P) đi qua đỉnh của hình nón nhưng không qua trục của hình nón và cắt hình nón theo giao tuyến là một tam giác cân có độ dài cạnh đáy bằng 2. Tính diện tích S của thiết diện được tạo ra.
A. S = 91
B. S = 2 3
C. S = 19
D. S = 2 6
Cho hình phẳng D giới hạn bởi đường cong y = 3 + x − 2 e x x e x + 1 , trục hoành và hai đường thẳng x=0, x=1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V = π a + b ln 1 + 1 e , trong đó a, b là các số hữu tỷ. Mệnh đề nào dưới đây là đúng?
A. a+b=5
B. a-2b=5
C. a+b=3
D. a-2b=7
Cho hình nón có thiết diện qua trục là một tam giác vuông cân cạnh huyền bằng 2a. Tính diện tích xung quanh Sxq của hình nón
Cho hình nón có thiết diện qua trục là một tam giác vuông cân cạnh huyền bằng 2a. Tính diện tích xung quanh S x q của hình nón
A. S x q = π 2 a 2
B. S x q = 2 π 2 a 2
C. S x q = 2 π a 2
D. S x q = π a 2
Thiết diện qua trục của một hình nón (N) là một tam giác vuông cân, có cạnh góc vuông bằng a diện tích toàn phần của hình nón (N) bằng:
A. π 2 a 2 2
B. π 1 + 2 a 2 2
C. π 1 + 3 a 2 2
D. π a 2 2