PB

Cho hình nón (N) có đỉnh S, tâm đường tròn đáy là O, góc ở đỉnh bằng 120 0 .  Một mặt phẳng qua S cắt hình nón (N) theo thiết diện là tam giác vuông SAB. Biết rằng khoảng cách giữa hai đường thẳng AB và SO bằng 3, tính diện tích xung quanh S x q  của hình nón N .

A.  S x q = 36 3 π .

B.  S x q = 27 3 π .

C.  S x q = 18 3 π .

D.  S x q = 9 3 π .

CT
5 tháng 5 2017 lúc 3:55

Đáp án C.

                                

Phương pháp: 

Diện tích xung quanh của hình nón: S x q = π R l  

Cách giải:

Gọi M là trung điểm AB ⇒ O M ⊥ A B .  Mà O M ⊥ S O (vì SO vuông góc với đáy)

⇒  OM là đoạn vuông góc chung của SO và AB

⇒ d S O ; A B = O M = 3  

Tam giác OMA vuông tại M: 

O A 2 = O M 2 + M A 2 ⇒ R 2 = 3 2 + M A 2 ⇒ M A = R 2 − 9  

Tam giác SAB vuông tại A có S A = S B  (Vì Δ S O B = Δ S O A c . g . c )

⇒ Δ S A B  vuông cân tại S

⇒ S A = A B 2 = 2 A M 2 = A M . 2 = 3 R 2 − 18  

(N) có góc ở đỉnh là

120 0 ⇒ A S O = 60 0  

Tam giác SOA vuông tại O: 

sin O S A = O A S A ⇒ sin 60 0 = R 3 R 2 − 18 = 3 2 ⇒ 2 R = 3 . 3 R 2 − 18 ⇔ 4 R 2 = 6 R 2 − 54

⇔ R 2 = 27 ⇒ R = 3 3 .

l = S A = 2 R 2 − 18 = 2.27 − 18 = 36 = 6

S x q = π R l = π .3 3 .6 = 18 π 3

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết