PB

Cho hình nón đỉnh S có đường sinh bằng 2, đường cao bằng 1. Tìm đường kính của  mặt cầu chứa điểm S và chứa đường tròn đáy hình nón đã cho.

A. 4

B. 2

C. 1

D. 2 3

CT
10 tháng 3 2019 lúc 4:39

Chọn A.

Gọi O, R lần lượt là tâm và bán kính của mặt cầu.

Đường tròn đáy của hình nón có tâm H bán kính r.

Do H là hình chiếu của S và O trên mặt đáy của hình nón nên S, H, O thẳng hàng.

Hình nón có độ dài đường sinh l=2, đường cao h=1.

Suy ra: 

Góc ở đỉnh của hình nón là  ∠ A S B = 2 ∠ A S H = 120 °  nên suy ra  H ∈ S O (như hình vẽ).

Trong tam giác OAH vuông tại H ta có:

Vậy đường kính mặt cầu chứa điểm S và đường tròn đáy hình nón bằng 4.

 

Cách 2:

Gọi O, R lần lượt là tâm và bán kính của mặt cầu.

Đường tròn đáy của hình nón có tâm H bán kính r.

Do H là hình chiếu của S và O trên mặt đáy của hình nón nên S, H, O thẳng hàng.

 

Hình nón có độ dài đường sinh l=2, đường cao h=1.

Trong tam giác SAH vuông tại H ta có:

Xét tam giác SOA có OS=OA=R OSA= 60 °

Suy ra tam giác SOA đều.

Do đó R=OA=SA=2.

 

Vậy đường kính mặt cầu chứa điểm S và đường tròn đáy hình nón bằng 4.

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết