PB

Cho hình lập phương ABCD.A’B’C’D’ có cạnh bằng a. Gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và DB’

A.  a 2 7

B.  a 4

C.  2 7 a

D.  a 2

CT
17 tháng 5 2018 lúc 6:45

Đáp án A

Phương pháp:

- Sử dụng phương pháp tọa độ hóa.

- Công thức tính khoảng cách giữa hai đường thẳng chéo nhau:

Cho  ∆  có VTCP  u →  và qua M;  ∆ ' có VTCP  v →  và qua M’

Cách giải:

Gắn hệ trục tọa độ như hình vẽ, trong đó:

A'(0;0;0), B'(0;a;0), C'(a;a;0), D'(a;0;0)

A(0;0;a), B(0;a;a), C(a;a;a); D(a;0;a), M(a/2;a;a)

Đường thẳng AM có VTCP  và qua A(0;0;a)

Đường thẳng DB’ có VTCP  và qua D(a;0;a)

A D   → = ( a ; 0 ; 0 )

Khoảng cách giữa hai đường thẳng AM và DB’: 

 

Ta có:

 

Vây, khoảng cách giữa AM và DB’ là  a 2 7  

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết