Ta có ( CC' , (AB'C)) = ( CC' ,( ADC'B') (1) Có CO vuông góc C'D suy ra CO vg góc ( ADC'B' ) Suy ra (1) = góc CC'O = góc CC'D = 45 độ
Ta có ( CC' , (AB'C)) = ( CC' ,( ADC'B') (1) Có CO vuông góc C'D suy ra CO vg góc ( ADC'B' ) Suy ra (1) = góc CC'O = góc CC'D = 45 độ
Cho hình lập phương A B C D . A ' B ' C ' D ' có cạnh bằng a, gọi α là góc giữa đường thẳng A ' B và mặt phẳng B B ' D ' D . Tính sin α
A. 3 5
B. 3 2
C. 1 2
D. 3 4
Cho hình lập phương ABCD.A'B'C'D' cạnh 2a, gọi M là trung điểm của BB' và P thuộc cạnh sao cho D P = 1 4 D D ' . Mặt phẳng (AMP) cắt CC' tại N. Thể tích khối đa diện AMNPBCD bằng
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Số đo của góc giữa hai mặt phẳng (BA’C) và (DA’C) là
A. 90 0
B. 60 0
C. 30 0
D. 45 0
Cho hình lập phương ABCD.A'B'C'D' có các cạnh bằng 1. M là trung điểm CC'. Tính góc giữa hai đường thẳng AD' và BM
A. 45 o
B. 18 o 26 '
C. 26 o 33 '
D. 18 o 43 '
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là tam giác ABC vuông cân tại A, cạnh BC=a 6 . Góc giữa mặt phẳng (AB'C) và mặt phẳng (BCC'B') bằng 60 0 . Tính thể tích V của khối đa diện
Cho hình lập phương ABCD.A'B'C'D' có cạnh bên bằng a (tham khảo hình vẽ bên). Gọi α là góc giữa đường thẳng A'C và mặt phẳng (A'B'C'D') thì:
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 3 . Mặt phẳng α cắt tất cả các cạnh bên của hình lập phương. Tính diện tích thiết diện của hình lập phương cắt bởi mặt phẳng α biết α tạo với mặt (ABB'A') một góc 60 0 .
Bài 1. Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng 4. a. Tính độ dài đường chéo của hình lập phương. b. Tính góc giữa AC' và mặt đáy c. Tính góc giữa AC và B'C' d. Tính khoảng cách từ A đến (A'BD)
Cho hình lập phương ABCD.A'B'C'D' có tất cả các cạnh bằng 2. Khoảng cách giữa hai mặt phẳng (AB'D') và (BC'D') bằng: