Chọn B.
- Tam giác ABC vuông cân tại A, BC = 42cm
- Tứ diện A.A’BC là tứ diện vuông tại A. Gọi h = d( A, (A’BC)), ta có:
Chọn B.
- Tam giác ABC vuông cân tại A, BC = 42cm
- Tứ diện A.A’BC là tứ diện vuông tại A. Gọi h = d( A, (A’BC)), ta có:
Cho lăng trụ đứng ABC. A’B’C’ có đáy ABC là tam giác vuông tại B, AB = a, AA’= 2a. Tính khoảng cách từ điểm A đến mặt phẳng (A’BC)
A. 2 5 a
B. 2 5 a 5
C. 5 a 5
D. 3 5 a 5
Cho hình lăng trụ đứng ABC.A’B’C’. Cạnh bên AA’=a, ABC là tam giác vuông tại A có BC=2a, A B = a 3 . Tính khoảng cách từ đỉnh A đến mặt phẳng (A’BC).
A. a 7 21
B. a 21 21
C. a 21 7
D. a 3 7
Cho hình lăng trụ đứng ABC.A’B’C’ có đáy ABC là tam giác vuông tại B, AB=a, AA’=2a. Tính khoảng cách từ điểm A đến mặt phẳng (A’BC).
A. 2 5 a
B. 2 5 a 5
C. 5 a 5
D. 3 5 a 5
Cho hình lăng trụ đứng ABC.A'B'C'. Cạnh bên AA' = a, ABC là tam giác vuông tại A có BC = 2a, AB = a 3 . Tính khoảng cách từ đỉnh A đến mặt phẳng (A'BC)
A . a 21 7
B . a 21 21
C . a 3 7
D . a 7 21
Cho hình lăng trụ đứng ABC. A’B’C’ có đáy là ABC là tam giác vuông BA = BC =a, cạnh bên A A ' = a 2 .Gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM, B’C’.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, AB=a, góc giữa AB' và mặt phẳng (BCC'B') bằng 30°
a) Xác định góc 30° và tính độ dài đường cao của hình lăng trụ
b) Tính khoảng cách giữa 2 đường thẳng AA' và B'C'
Cho hình lăng trụ đứng ABC. A’B’C’ có đáy là tam giác vuông cân tại đỉnh A, mặt bên BCC’B’ là hình vuông, khoảng cách giữa AB’ và CC’ bằng a. Thể tích của khối trụ ABC. A’B’C’.
A. a 3
B. 2 a 3 2
C. 2 a 3 3
D. 2 a 3
Cho hình lăng trụ đứng ABC. A'B'C' có đáy là tam giác ABC vuông tại A có BC=2a, A B = a 3 . Khoảng cách từ AA' đến mặt phẳng (BCC'B') là:
A. a 21 7
B. a 3 2
C. a 5 2
D. a 7 3
Cho lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, BC= 2 2 a Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm O của BC. Khoảng cách từ O đến AA' bằng 3 2 a 11 . Tính thể tích của khối lăng trụ đã cho.