Cho hình lăng trụ ABC.A'B'C' có tất cả các cạnh đều bằng a. Góc tạo bởi cạnh bên và mặt phẳng đáy bằng 30 0 . Hình chiếu H của A trên mặt phẳng (A'B'C') là trung điểm của B’C’. Tính theo a khoảng cách giữa hai mặt phẳng đáy của lăng trụ ABC.A'B'C'.
Cho lăng trụ ABC.A'B'C' có các mặt bên đều là hình vuông cạnh a. Khoảng cách giữa hai đường thẳng A’B và B’C’ bằng
Cho lăng trụ tam giác đều ABC.A'B'C' có tất các cạnh bằng a (tham khảo hình vẽ). Tính theo a khoảng cách giữa hai đường thẳng AA' và B'C.
Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh đều bằng a (hình vẽ bên dưới). Khoảng cách giữa hai đường thẳng AC và bằng?
Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Gọi M, N lần lượt là trung điểm của AC và B’C’ (tham khảo hình vẽ bên). Khoảng cách giữa hai đường thẳng MN và B’D’ bằng
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác đều cạnh a. Hình chiếu vuông góc của A’ trên mặt phẳng (ABC) là trung điểm O của cạnh AB. Số đo của góc giữa đường thẳng AA' và mặt phẳng ( A ' B ' C ' ) bằng 60 0 . Gọi I là trung điểm của cạnh B’C’. Khoảng cách giữa hai đường thẳng CI và AB’ bằng
Cho hình lăng trụ tam giác đều A B C . A ' B ' C ' có A B = 2 3 , A A ' = 2 . Gọi M, N, P lần lượt là trung điểm của các cạnh A ' B ' , A ' C ' và BC (tham khảo hình vẽ bên). Côsin của góc tạo bởi hai mặt phẳng ( A B ' C ' ) v à ( M N P ) bằng
A. 6 13 65
B. 13 65
C. 17 13 65
D. 18 13 65
Cho hình lăng trụ tam giác đều ABC.A'B'C' có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AB và A’C’ bằng
A. a 3
B. a
C. 2 a
D. a 2
Cho hình chóp tứ giác đều S . A B C D có tất cả các cạnh bằng a. Gọi M là trung điểm SD (tham khảo hình vẽ bên) Tang của góc giữa đường thẳng BM và mặt phẳng (ABCD) bằng
A. 2 2
B. 3 3
C. 2 3
D. 1 3