Đáp án C
Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.
Đáp án C
Ta có: A B C ^ = 120 ∘ ⇒ B A D ^ = 60 ∘ suy ra tam giác ABD là tam giác đều cạnh a. Khi đó A’.ABD là chóp đều cạnh đáy bằng a. Như vậy hình chiếu vuông góc của A’ lên mặt đáy trùng với trọng tâm tam giác ABD.
Cho hình lăng trụ A B C D . A ' B ' C ' D ' có đáy ABCD là hình thoi cạnh a, tâm O và A B C = 120 ° . Các cạnh AA', A'B, A' D cùng tạo với đáy một góc 60 ° .Tính theo a thể tích V của khối lăng trụ đã cho.
A. a 3 3
B. a 3 3 6
C. a 3 3 2
D. 3 a 3 2
Cho hình lăng trụ ABCD.A'B'C'D' có đáy là hình thoi cạnh bằng a và A B C ⏜ = 120 ° . Góc giữa cạnh bên AA' và mặt đáy bằng 60 ° , điếm A’ cách đều các điểm A, B, D . Tính thể tích khối lăng trụ đã cho theo a.
A. a 3 3 3
B. a 3 3 2
C. a 3 3 12
D. a 3 3 6
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, A C = 2 a , B A D ^ = 120 ∘ . Hình chiếu vuông góc của điểm B trên mặt phẳng A ' B ' C ' D ' là trung điểm cạnh A' B' góc giữa mặt phẳng A C ' D ' và mặt đáy lăng trụ bằng 60 ∘ . Tính thể tích V của khối lăng trụ A B C D . A ' B ' C ' D '
A. V = 2 3 a 3
B. V = 3 3 a 3
C. V = 3 a 3
D. V = 6 3 a 3
Cho lăng trụ ABC.A′B′C′ có đáy ABC là tam giác đều cạnh 2a. Hình chiếu vuông góc của điểm A′ lên mặt phẳng (ABC) trùng với tâm O của đường tròn ngoại tiếp tam giác ABC, biết O A ' = a . Tính theo a thể tích V của khối lăng trụ đã cho.
A. 3 a 3 4 .
B. 3 a 3 3 .
C. 3 a 3
D. 3 a 3 12
Cho hình lăng trụ đứng ABCD.A′B′C′D′ có đáy là hình vuông cạnh bằng 4cm, đường chéo AB′ của mặt bên (ABB′A′) có độ dài bằng 5cm. Tính thể tích V của khối lăng trụ ABCD.A′B′C′D′.
A. 48 cm 3
B. 24 cm 3
C. 16 cm 3
D. 32 cm 3
Cho khối lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a và điểm A’ cách đều ba điểm A, B, C. Cạnh bên AA’ tạo với mặt phẳng đáy một góc 60 ° Tính thể tích khối lăng trụ ABC.A’B’C’
A. a 3 3 10
B. a 3 3 12
C. a 3 3 4
D. a 3 3 8
Cho khối lăng trụ ABC.A′B′C′ có đáy là tam giác vuông cân tại A, BC = 2a và hình chiếu vuông góc của A′ lên mặt phẳng (ABC) trùng với trung điểm cạnh BC, góc giữa AA′ và mặt đáy bằng 60 ° . Thể tích khối lăng trụ đã cho bằng
A. 3 a 3 3
B. a 3 2
C. 3 a 3 2
D. 3 a 3
Cho hình lăng trụ tứ giác đều ABCD . A ' B ' C ' D ' có cạnh đáy bằng a và góc giữa A′B và mặt phẳng AA ' C ' C bằng 30 0 . Tính thể tích V của khối lăng trụ đã cho.
A. a 3 2
B. 2 a 3
C. a 3
D. a 3 3
Cho hình lăng trụ ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a, A B C ^ = 60 ° . Chân đường cao hạ từ B’ trùng với tâm O của đáy ABCD; góc giữa mặt phẳng (BB'C’C) với đáy bằng 600. Thể tích lăng trụ bằng:
A. 3 a 3 3 8
B. 2 a 3 3 9
C. 3 a 3 2 8
D. 3 a 3 4