PB

Cho hình hộp chữ nhật ABCD.A’B’C’D’ có A B = a ,   A D = 2 a ,   A A ’ = 3 a . Gọi M, N, P lần lượt là trung điểm của BC, C’D’ và DD’. Tính khoảng cách từ A đến mp(MNP).

A. 15 22 a

B. 9 11 a

C. 3 4 a

D. 15 11 a

CT
23 tháng 2 2018 lúc 13:33

Đáp án D

Gọi E là giao điểm của NP và CD. Gọi G là giao điểm của NP và CC’. Gọi K là giao điểm của MG và B’C’. Gọi Q là giao điểm của ME và AD. Khi đó mặt phẳng (MNP) chính là mặt phẳng (MEG). Gọi d 1 ,   d 2  lần lượt là khoảng cách từ C, A đến mặt phẳng (MEG). Do AC cắt (MEG) tại điểm H (như hình vẽ) nên d 1 d 2 = H C H A . Do tứ diện CMEG là tứ diện vuông tại C nên

1 d 1 2 = 1 C M 2 + 1 C E 2 + 1 C G 2

Ta có G C ' G C = C ' N C E = 1 3  

 

Suy ra G C = 3 2 C C ' = 9 a 2  

Như vậy: 1 d 1 2 = 1 a 2 + 4 9 a 2 + 4 81 a 2  

Từ đó d 1 2 = 81 a 2 12 ⇒ d 1 = 9 11 . Ta có Q D M C = E D E C = 1 3 ⇒ Q D = a 3  

Ta có Δ H C M đồng dạng với Δ H A Q  nên:

H C H A = M C A Q = a 2 a − a 3 = 3 5 ⇒ d 1 d 2 = 3 5 ⇒ d 2 = 5 3 d 1 = 5.9 a 3.11 = 15 a 11

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết