Cho hình chữ nhật ABCD có AB>AD. Kẻ AH vuông góc BD( H thuộc BD).Trên tia đối tia AH lấy điểm E sao cho AE = BD a)Tam giác EAC là tam gì b)Tính góc ECD
1. Cho hình chữ nhật ABCD có hai đường chéo AC và BD cắt nhau tại O, trên đoạn OB lấy điểm E bất kỳ (khác O, B), trên tia AE lấy điểm F sao cho E là trung điểm AF. Kẻ FM vuông góc với BC , kẻ FN vuông góc với đường thẳng DC (N thuộc đường thẳng DC).
a)Tứ giác CMFN là hình gì, vì sao?
b)Chứng minh CF // BD.
c)Chứng minh ba điểm E, M, N thẳng hàng.
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng 1AD2=1AM2+1AN2
Cho hình chữ nhật ABCD (AB > BC) , E là điểm trên cạnh AB sao cho AD = AE . Kẻ EF vuông góc với CD tại F , kẻ BH vuông góc với BF tại điểm H.
a) Tứ giác AEFD là hình gì? Vì sao?
b) Chứng minh AH \(\perp\)HC
Cho hình chữ nhật ABCD, trên đường chéo BD lấy M. Trên tia đối AM lấy N sao cho M là trung điểm AN.Vẽ NE vuông góc BC, NF vuông góc ED
A)Chứng minh CN//BD, EF//AC
B) M,E,F thẳng hàng
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giácc AMD có diện tích lớn nhất.
Cho hình vuông ABCD. Trên tia đối của tia CD lấy điểm E bất kì sao cho CE<CD. Kẻ BM vuông góc với BE (M ϵ BE), BM cắt BC tại H, AH cắt BD tại I, AC cắt BD tại O. a) Chứng minh rằng EI vuông góc với BD. b) Chứng minh rằng MI là tia phân giác của góc BMD. c) Tìm vị trí điểm E sao cho tam giác AMD có diện tích lớn nhất.
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
1. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
2.CM: ∆CBH~∆EAH
3. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình chữ nhật ABCD. Gọi H là chân đường vuông góc kẻ từ A đến BD. Lấy điểm E trên DH và điểm K trên BC sao cho D E D H = C K C B . Chứng minh:
a) Δ A D E ∽ Δ A C K ;
b) Δ A E K ∽ Δ A D C ;
c) A E K ^ = 90 0