LT

Cho hình chữ nhật ABCD có AB= 3cm, AD= 4cm. Vẽ AH vuông góc BD

a) Chứng minh tam giác AHB và BCD đồng dạng

b) Tính diện tích tam giác AHB

c) Đường thẳng qua D và vuông góc BD cắt BC tại E. Vẽ CF vuông góc DE. Gọi O là giao điểm AC và BD, OE cắt CF tại I. Chứng minh I là trung điểm CF

N2
17 tháng 4 2022 lúc 7:05

$#Shả$

undefined

`a)` Xét `\triangleAHB` và `\triangleBCD` ta có `:`

`\hat{AHB}=\hat{BCD}=90^{o}`

`\hat{ABH}=\hat{BDC} ` (slt)

Vậy `\triangleAHB ` $\backsim$ `\triangleBCD` (g-g)

Bình luận (0)
TH
17 tháng 4 2022 lúc 9:18

a) △AHB và △BCD có: \(\widehat{AHB}=\widehat{BCD}=90^0\)\(\widehat{ABH}=\widehat{BDC}\) (AB//DC).

\(\Rightarrow\)△AHB∼△BCD (g-g).

b) △ABD có: \(BD^2=AD^2+AB^2\Rightarrow BD=\sqrt{AD^2+AB^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

△AHB∼△BCD \(\Rightarrow\dfrac{AH}{BC}=\dfrac{AB}{BD}=\dfrac{HB}{CD}\)

\(\Rightarrow\left[{}\begin{matrix}AH=\dfrac{AB.BC}{BD}=\dfrac{3.4}{5}=2,4\left(cm\right)\\HB=\dfrac{AB.CD}{BD}=\dfrac{3.3}{5}=1,8\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow S_{AHB}=\dfrac{1}{2}AH.HB=\dfrac{1}{2}.2,4.1,8=2,16\left(cm^2\right)\)

c) ABCD là hình chữ nhật, AC cắt BD tại O.

\(\Rightarrow\)O là trung điểm của AC và BD.

BD⊥DE tại D, CF⊥DE tại F. \(\Rightarrow\)BD//CF.

-△ODE có: IF//OD \(\Rightarrow\dfrac{IF}{OD}=\dfrac{EI}{EO}\).

-△OBE có: IC//OB \(\Rightarrow\dfrac{IC}{OB}=\dfrac{EI}{EO}=\dfrac{IF}{OD}\Rightarrow IC=IF\Rightarrow\)I là trung điểm CF.

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
NM
Xem chi tiết
DK
Xem chi tiết
NH
Xem chi tiết
HB
Xem chi tiết
K1
Xem chi tiết
LD
Xem chi tiết
PK
Xem chi tiết
HQ
Xem chi tiết