PB

Cho hình chóp tứ giác đều S.ABCDcó cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 60 ° . Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S.ABMN là

A.  a 3 3 2

B.  a 3 3 4

C.  a 3 3 3

D.  a 3 3

CT
19 tháng 7 2017 lúc 14:41

Đáp án A

Gọi G là trọng tâm của tam giác SAC và AG cắt SC tại M =>M là trung điểm của SC, tương tự N là trung điểm của SD. Do đó, mp (P) cắt khối chóp theo thiết diện là tứ giác ABMN.

Ta có

V S . A M N V S . A C D = S M S C . S N S D = 1 4 ; V S . A B M V S . A B C = 1 2 ⇒ V S . A B M N V S . A B C D = 3 8 .

Suy ra

V S . A B M N = 3 8 . 1 3 . S O . S A B C D = a 8 . tan 60 ∘ . 2 a 2 = a 3 3 2 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết