PB

Cho hình chóp tứ giác đều S.ABCD. Gọi M, N lần lượt là trung điểm của SA và SC.

a) Chứng minh AC ⊥ SD

b) Chứng minh MN ⊥ (SBD)

c) Cho AB = SA = a. Tính coossin của góc giữa (SBC) và (ABCD)

CT
6 tháng 9 2018 lúc 2:15

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (AC ⊥ SH & AC ⊥ BD ⇒ AC ⊥ (SBD) ⇒ AC ⊥ SD.

b) (MN//AC & AC ⊥ (SBD) ⇒ MN ⊥ (SBD).

c) + Xác định góc α giữa (SBC) và (ABCD)

Gọi I là trung điểm của BC, ta có:

(BC ⊥ IH & BC ⊥ SH ⇒ BC ⊥ (SIH)

⇒ BC ⊥ SI.

⇒ [((SBC),(ABCD)) ] = ∠(SIH) = α.

+ Tính α:

Trong tam giác SIH, ta có: cosα = IH/IS = √3/3 ⇒ α = arccos√3/3.

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
PB
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MT
Xem chi tiết
TH
Xem chi tiết