PB

Cho hình chóp tứ giác đều S.ABCD, có cạnh đáy bằng a và có thể tích V = a 3 3 6  Gọi J là điểm cách đều tất cả các mặt của hình chóp. Tính khoảng cách d từ J đến mặt phẳng đáy.

A.  d = a 3 4

B.  d = a 3 2

C.  d = a 3 6

D.  d = a 3 3

CT
2 tháng 8 2019 lúc 8:16

Đáp án là  C.

                                    

Gọi O là tâm hình vuông ABCD .Ta có đường cao của hình chóp SABCD là  SO

V S A B C D = 1 3 S 0 . S A B C D ⇔ 3 6 a 8 = 1 3 S O . a 2 ⇒ S O = 3 2 a .

Xét tam giác SMO ta có SM= S 0 2 + O M 2 = ( 3 2 a ) 2 + ( a 2 ) 2 = a

Gọi M,N lần lượt là trung điểm của AB,CD.Khi đó J là tâm đường tròn nội tiếp tam giác SMN. Khi đó ta có MJ là đường phân giác của tam giác SMN.

Suy ra : S J J O = M S M O = a a = 2 ⇒ S J = 2 J O .

Mà  S 0 = S J + J O = 3 2 a ⇔ 3 J O = 3 2 a ⇔ J O = 3 6

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết