PB

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và cạnh bên bằng a 3 . Gọi V 1 , V 2  lần lượt thể tích khối cầu và khối nón ngoại tiếp hình chóp S.ABCD. Tính tỷ số V 1 V 2 .

A.  V 1 V 2 = 324 25

B.  V 1 V 2 = 18 30 25

C.  V 1 V 2 = 36 25

D.  V 1 V 2 = 108 25

CT
18 tháng 3 2018 lúc 3:49

Đáp án D

Gọi O là tâm của hình vuông ABCD.vì S.ABCD là hình chop đều nên   S O ⊥ ( A B C D )

Từ giả thiết, ta có S O = S A 2 - O A 2 = a 10 2  .

Khối nón ngoại tiếp hình chóp S.ABCD có chiều cao h = S O = a 10 2 và bán kính đáy là  r = O A = a 2 2  .

Suy ra  V 2 = 1 3 πr 2 h = πa 3 10 12

Ta có SO là trục đường tròn ngoại tiếp hình vuông ABCD. Đường trung trực của SB nằm trong mặt phẳng (SBD) cắt SB, SO lần lượt tại M, I. Ta có IS = IB = IA = IC = ID nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD.

Ta có SI.IO = SM.SB  ⇒ SI =  S B 2 2 S O = 3 a 10 10

 

Suy ra V 1 = 4 3 π . ( SI ) 3 = 9 πa 3 10 25 . Do đó V 1 V 2 = 108 25  

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết