PB

Cho hình chóp tứ giác đều S. ABCD có cạnh đáy bằng 2a. Mặt bên của hình chóp tạo với mặt đáy một góc 600. Mặt phẳng (P) chứa AB và đi qua trọng tâm G của tam giác SAC cắt SC, SD lần lượt tại M và N. Thể tích khối chóp S. ABMN là:

A.  a 3 3 2

B.  a 3 3 4

C.  a 3 3 3

D.  a 3 3

CT
15 tháng 12 2019 lúc 2:11

Chọn A

Gọi H là trung điểm cạnh CD và O là tâm hình vuông ABCD.

Ta có S. ABCD là hình chóp tứ giác đều nên các mặt bên hợp với đáy các góc bằng nhau

Giả sử S C D , A B C D ^ = S H O ^ = 60 o  

Tam giác SHO vuông tại O có:

Mà G là trọng tâm tam giác SAC nên G cũng là trọng tâm tam giác SBD


Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết