PB

Cho hình chóp tam giác S.ABC có đáy ABC là một tam giác vuông cân tại B với trọng tâm G, cạnh bên SA tạo với đáy (ABC) một góc 30 0 . Biết hai  mặt phẳng S B G   v à   S C G  cùng vuông góc với mặt phẳng (ABC). Tính cosin của góc giữa hai đường thẳng SABC

A.  15 5

B.  3 15 20

C.  15 10

D.  30 20

CT
28 tháng 3 2019 lúc 3:25

Phương pháp:

+) Gọi M, N, P, Q lần lượt là trung điểm của AB, SC, BC, AC. Chứng minh  ∠ S A ; B C = ∠ N Q ; M Q

+) Áp dụng định lí cosin trong tam giác MNQ.

 

Cách giải:

Áp dụng định lý cosin trong tam giác MNQ:

Chú ý: Góc giữa hai đường thẳng là góc nhọn nên cosin của góc giữa hai đường thẳng là giá trị dương.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết