Bài 4: Hai mặt phẳng vuông góc

ST

Cho hình chóp tam giác đều S.ABC có cạnh đáy 2a,đường cao SO=3a.Tính: a) Góc giữa cạnh bên và mặt đáy b) (SA,(SBC))

NL
19 tháng 3 2021 lúc 17:01

a. \(OC=\dfrac{2}{3}.2a.\dfrac{\sqrt{3}}{2}=\dfrac{2a\sqrt{3}}{3}\)

\(\Rightarrow tan\widehat{SCO}=\dfrac{SO}{OC}=\dfrac{3\sqrt{3}}{2}\) \(\Rightarrow\widehat{SCO}\simeq69^0\)

b. Gọi M là trung điểm BC \(\Rightarrow BC\perp\left(SAM\right)\)

Trong mp (SAM), từ A kẻ  \(AH\perp SM\Rightarrow AH\perp\left(SBC\right)\)

\(\Rightarrow\widehat{ASM}\) là góc giữa SA và (SBC)

\(SA=\sqrt{SO^2+OC^2}=\dfrac{a\sqrt{93}}{3}\)

\(SM=\sqrt{SA^2-\left(\dfrac{BC}{2}\right)^2}=\dfrac{2a\sqrt{21}}{3}\)

\(AM=a\sqrt{3}\)

Áp dụng định lý hàm cos:

\(cos\widehat{ASM}=\dfrac{SA^2+SM^2-AM^2}{2SA.MM}=...\)

Bình luận (0)