PB

Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau từng đôi một. Biết thể tích của khối chóp bằng  a 3 6 . Tính bán kính r của mặt cầu nội tiếp của hình chóp S.ABC.

A. r = a 3 + 3

B. r = 2a

C.  r = a 3 3 + 2 3

D.  r = 2 a 3 3 + 2 3

CT
28 tháng 2 2017 lúc 15:39

Đáp án là A

Cách 1. Áp dụng công thức:  r = 3 V S t p (*) và tam giác đều cạnh x có diện tích  S = x 2 3 4 .

Từ giả thiết S.ABC đều có SA=SB=SC. Lại có SA, SB, SC đôi một vuông góc và thể tích khối chóp S.ABC bằng  a 3 6  nên ta có SA=SB=SC=a.

Suy ra AB=BC=CA=a 2  và tam giác ABC đều cạnh có độ dài a 2 . Do đó diện tích toàn phần của khối chóp S.ABC 

 

Thay vào (*) ta được:

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết