PB

Cho hình chóp S.ABCD, M, N, P, Q lần lượt là trọng tâm các tam giác SAB, SBC, SCD, SDA. Khẳng định nào sau đây là đúng?

A. MNPQ là hình bình hành.

B. MNPQ là hình thoi.

C. MNPQ là hình thang chỉ có một cặp cạnh đối song song.

D. MNPQ là tứ giác không có cặp cạnh nào song song.

CT
16 tháng 9 2018 lúc 8:33

Đáp án A

Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA

Vì M, N, P, Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.

Do đó ta có: S M S F = S N S G = S P S H = S Q S I = 2 3

Khi đó: MN // FG; NP // GH; QP // IH; MQ // FI

Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)

Suy ra FI // BD

Chứng minh tương tự ta có: GH // BD

Nên FI // GH // BD

Tương tự FG // IH // AC

Do đó MQ // NP // FI // GH và MN // PQ // FG // IH

Vậy tứ giác MNPQ là hình bình hành.

Chọn đáp án A

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
HA
Xem chi tiết
XC
Xem chi tiết
H24
Xem chi tiết
LT
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết