Đáp án A
Gọi F, G, H, I lần lượt là trung điểm của AB; BC; CD và DA
Vì M, N, P, Q lần lượt là trọng tâm của các tam giác SAB, SBC, SCD, SDA.
Do đó ta có: S M S F = S N S G = S P S H = S Q S I = 2 3
Khi đó: MN // FG; NP // GH; QP // IH; MQ // FI
Xét tam giác ABD có FI là đường trung bình (vì F và I lần lượt là trung điểm của AB và AD)
Suy ra FI // BD
Chứng minh tương tự ta có: GH // BD
Nên FI // GH // BD
Tương tự FG // IH // AC
Do đó MQ // NP // FI // GH và MN // PQ // FG // IH
Vậy tứ giác MNPQ là hình bình hành.
Chọn đáp án A