Bài 2: Hai đường thẳng vuông góc

0H

Cho hình chóp S.ABCD đáy là hình vuông có cạnh 2a. Cạnh SA=a và vuông góc với đáy. Gọi M là trung điểm của CD. Tính cos α với α là góc tạo bởi 2 đường thắng SB, AM.

AM
11 tháng 2 2022 lúc 21:18

Bạn vẽ hình giúp mình nha ^^

Xét (ABCD), kẻ \(MH\perp AB\left(H\in AB\right)\)

Xét (SAB), kẻ HF//SB(\(F\in SA\))

Có: \(\left\{{}\begin{matrix}MH\perp AB\\MH\perp SA\end{matrix}\right.\)\(\Rightarrow MH\perp\left(SAB\right)\)\(\Rightarrow MH\perp HF\)

Ta có: \(\alpha=\left(\stackrel\frown{SB,AM}\right)=\left(\stackrel\frown{HF,MH}\right)=arccos\left(\dfrac{HA}{HF}\right)\)

Xét \(\Delta AHF\) vuông tại A có: \(HF^2=HA^2+AF^2=a^2+\left(\dfrac{a}{2}\right)^2=\dfrac{5}{4}a^2\Rightarrow HF=\dfrac{a\sqrt{5}}{2}\)

\(\Rightarrow\alpha=arccos\left(\dfrac{HA}{HF}\right)=arccos\left(\dfrac{2a}{a\sqrt{5}}\right)\approx26,57^o\) \(\Rightarrow cos\alpha=\dfrac{HA}{HF}=\dfrac{2a}{a\sqrt{5}}=\dfrac{2}{\sqrt{5}}\)

Bình luận (2)

Các câu hỏi tương tự
HN
Xem chi tiết
JE
Xem chi tiết
NH
Xem chi tiết
TD
Xem chi tiết
TC
Xem chi tiết
JE
Xem chi tiết
TD
Xem chi tiết
TM
Xem chi tiết
NC
Xem chi tiết