PB

Cho hình chóp S.ABCD, đáy ABCD là hình vuông cạnh a, cạnh SA=a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm các cạnh BC, SD α  là góc giữa đường thẳng MN  (SAC). Giá trị tan α  

A.  6 3

B.   6 2

C.    3 2

D.  2 3

CT
8 tháng 10 2017 lúc 13:43

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

N là trung điểm của SD ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết