Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh bằng a. SA LOABCD) và SA= a a) Chứng minh BD L(SAC) và CD L(SAD). b) Gọi điểm 1 là trung điểm của đoạn SD. Tính độ dài các đoạn thẳng SD và KC . c) Tìm hinh chiếu của đường thẳng KC lên mặt phẳng (ABCD). Tính góc giữa C và (ABCD).
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA và \(\Delta\) là đường thẳng qua M song song với mặt phẳng (SBD) và cắt BC. Gọi I, J lần lượt là giao điểm của \(\Delta\) với BC và mặt phẳng (SCD). Tính tỉ số MI/MJ
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.
a). Tính khoảng cách từ điểm S đến mp(ABCD).
b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.
c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.
e). Tính góc giữa đường thẳng SC và mp(ABCD).
f). Tính góc giữa đường thẳng SC và mp(SAB).
g). Tính góc giữa đường thẳng SC và mp(SAD).
h). Tính góc hợp bởi hai mặt phẳng (SBD) và (ABCD).
i). Tính góc hợp bởi hai mặt phẳng (SBC) và (ABCD).
j). Tính khoảngcách từ điểm A đến mp(SBC).
k). Tính khoảng cách từ điểm A đến mp(SCD).
l). Tính khoảng cách từ điểm A đến mp(SBD).
m). Tính khoảng cách giữa hai đường thẳng chéo nhau BD và SC
cho hình chóp S.ABCD có đáy ABCD là hình bình hành .Gọi O là giao điểm của AC và BD .M và N lần lượt là trung điểm của CD và SA . G là trọng tâm tam giác SAB .Gọi \(\Delta\) là giao tuyến của 2 mặt phẳng (SAD) và (SMG),P là giao điểm của đường thẳng OG và \(\Delta\) .Chứng minh P,N ,D thẳng hàng
Cho chóp S.ABCD đáy là hình bình hành tâm O. M là điểm trên cạnh SD sao cho SD = 3SM.
a) Tìm giao tuyến (SAC) và (SBD); (SAB) và (SCD)
b) Tìm giao điểm I của BM và (SAC) . Chứng tỏ I là trung điểm của SO
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. M, N lần lượt là trung điểm của AB và SC. I là giao điẻme của đường thẳng AN và mặt phẳng (SBD). J là giao điểm của đường thẳng MN và mặt phẳng (SBD). Khi đó tỉ số IB/IJ
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là điểm thuộc SA sao cho SM=3MA. a, Tìm giao tuyến của hai mặt phẳng (SAC) và (SBD). b, Tìm giao tuyến H của MO và mặt phẳng (SCD)
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M và N lần lượt là trung điểm của AB và SC. a) Xác định giao điểm I, K của đường thẳng AN,MN với (SBD); b) Chứng minh ba điểm B,I,K thẳng hàng c) Xác định thiết diện của hình chóp S.ABCD khi cắt bởi (ABN); d) Tính các tỷ số (IA)/(IN), (KM)/(KN), (IB)/(IK)