Chương 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

H24

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M là trung điểm của SA và \(\Delta\) là đường thẳng qua M song song với mặt phẳng (SBD) và cắt BC. Gọi I, J lần lượt là giao điểm của \(\Delta\) với BC và mặt phẳng (SCD). Tính tỉ số MI/MJ 

NL
18 tháng 1 2024 lúc 19:57

Chà, bài này dựng xong hình là xong thôi (tính toán đơn giản bằng Talet)

Đầu tiên là dựng mp qua M và song song (SBD): qua M kẻ các đường thẳng song song SB, SD lần lượt cắt AB, AD tại E và F

Nối EF kéo dài cắt BC tại I và CD tại G

Qua G kẻ đường thẳng song song MF (hoặc SD) cắt MI kéo dài tại J

Talet cho ta: \(\dfrac{MI}{MJ}=\dfrac{IF}{GF}\)

Mà \(\dfrac{GF}{GI}=\dfrac{DF}{BI}=\dfrac{\dfrac{1}{2}AD}{BC+\dfrac{1}{2}BC}=...\)

Vậy là xong

Bình luận (0)
NL
18 tháng 1 2024 lúc 20:01

loading...

Bình luận (3)

Các câu hỏi tương tự
H24
Xem chi tiết
LL
Xem chi tiết
TN
Xem chi tiết
TY
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
DM
Xem chi tiết
NT
Xem chi tiết