Bài 4: Hai mặt phẳng vuông góc

TH

Cho hình chóp s.abcd có đấy là hình vuông cạnh a , sa vuông góc abcd, sa = a căn 3 chia 3.

Cmr BD vuông góc SAC

Tính góc (SC;SAB), (SCD;ABCD)

Gọi AH, AK lần lượt là đường cao của tam giác SAB và SAD

Cmr SAC vuông góc AHK

Giúp em với ạ😥

NL
1 tháng 6 2020 lúc 20:40

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\)

Lại có \(BD\perp AC\) (hai đường chéo hv)

\(\Rightarrow BD\perp\left(SAC\right)\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp BC\\BC\perp AB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\) (1)

\(\Rightarrow\widehat{CSB}\) là góc giữa SC và (SAB)

\(SB=\sqrt{SA^2+AB^2}=\frac{2a\sqrt{3}}{3}\)

\(\Rightarrow tan\widehat{CSB}=\frac{BC}{SB}=\frac{\sqrt{3}}{2}\Rightarrow\widehat{CSB}\approx41^0\)

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\) (2)

\(\Rightarrow\widehat{SDA}\) là góc giữa (SCD) và (ABCD)

\(tan\widehat{SDA}=\frac{SA}{AD}=\frac{\sqrt{3}}{3}\Rightarrow\widehat{SDA}=30^0\)

Từ (1) \(\Rightarrow BC\perp AH\), mà \(AH\perp SB\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\) (3)

Từ (2) \(\Rightarrow CD\perp AK\), mà \(AK\perp SD\Rightarrow AK\perp\left(SCD\right)\Rightarrow AK\perp SC\) (4)

(3);(4) \(\Rightarrow SC\perp\left(AHK\right)\) \(\Rightarrow\left(SAC\right)\perp\left(AHK\right)\)

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
TM
Xem chi tiết
TL
Xem chi tiết
RH
Xem chi tiết
SK
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
RC
Xem chi tiết
PK
Xem chi tiết