ta có BC//AD và SA vuông BC => SAD=90
(SD,BC)=(SD,AD)=SDA
xét tam giác SAD vuông tại A có tan(SDA)=SA/AD=\(\sqrt3\) suy ra SDA=60
ta có BC//AD và SA vuông BC => SAD=90
(SD,BC)=(SD,AD)=SDA
xét tam giác SAD vuông tại A có tan(SDA)=SA/AD=\(\sqrt3\) suy ra SDA=60
cho hình thang ABCD vuông góc A và D đáy lớn CD 2 cạnh AD và BD lần lượt nằm trên 2 đường thẳng có phương trình :2x+y+3=0 và 3x-y+7=0 góc tạo bởi BC và AB 45 độ . Tính tọa độ B biết hoành độ B>-2 và diện tích hình thang =15/2
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
Cho ba điểm A(3;2), B(1;-2), C(4;1). Đường thẳng qua A và vuông góc với cạnh BC có phương trình là:
A.x – y + 5 = 0
B.x + y – 5 = 0
C.x – y – 1 = 0
D.x + y = 0
Bài 5: (3,0 điểm) Cho tam giác ABC cân tại A, A là góc nhọn. M là trung điểm BC. Gọi D là điểm nằm giữa A và M.
a) Cho AC = 10cm, AM = 8cm. Tính độ dài cạnh BC
b) Vẽ đường thẳng d đi qua D và song song với BC, Vẽ đường thẳng đi qua B song song với AC và cắt d tại E, vẽ đường thẳng đi qua C song song với AB và cắt d tại F. Chứng minh tam giác AEF là tam giác
Cho hình vuông ABCD có hai đường chéo cắt nhau tại E. Lấy I thuộc cạnh AB, M thuộc cạnh BC sao cho góc IEM = 90 độ (I và M không trùng với các đỉnh của hình vuông).
a) Chứng minh tứ giác BIEM nội tiếp.
b) Tính số đo góc IME
c) Gọi N là giao điểm AM và DC, K là giao điểm BN và EM .CHứng minh CK vuông góc BN
cho hình thang vuông abcd vuông tại a và b, biết ab=bc=1 và góc adc=45" gọi o là giao điểm của hai đường chéo và m là trung điểm của đoạn ad. tính độ dài vecto om
Phát biểu mệnh đề P ⇔ Q và xét tính đúng sai của nó với:
P: "Tứ giác ABCD là hình thoi" và Q:" Tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau"
A. Phát biểu: "Tứ giác ABCD là hình thoi nếu tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này đúng vì mệnh đề P => Q,Q => P đều đúng.
B. Phát biểu: "Tứ giác ABCD là hình thoi khi và chỉ khi tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này đúng vì mệnh đề P => Q, Q => P đều đúng.
C. Phát biểu: "Tứ giác ABCD là hình thoi khi và chỉ khi tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này sai vì mệnh đề P => Q, Q => P đều sai.
D. Phát biểu: "Tứ giác ABCD là hình thoi khi và chỉ khi tứ giác ABCD là hình bình hành có hai đường chéo vuông góc với nhau". Mệnh đề này sai vì mệnh đề P => Q sai, Q => P đúng.
Cho tam giác ABC vuông tại A, góc B = 60. Gọi I là trung điểm cạnh BC.Trên các cạnh AB,AC lần lượt lấy các điểm M,N.Chứng minh rằng MI vuông góc với NI khi và chỉ khi BM + căn 3 CN = BC
Cho hình vuông cố định A,B,C,D cạnh a.Trên đường thẳng DC có điểm M thay đổi .Gọi K,E,J lần lượt là giao điểm của các cặp đường thẳng BC và AM,DK và DM,AM và CE .câu a,Tính Độ dài Vecto OJ,với O là tâm hình vuông ABCD.Câu b,Khi Vecto OJ cùng hướng với Vecto DC hãy tính độ dài vecto AM.Mọi người giải hộ mik nhé