PB

Cho hình chóp S.ABCD có đáy là hình bình hành và có thể tích là V. Điểm P là trung điểm của SC, một mặt phẳng qua AP cắt hai cạnh SD và SB lần lượt tại M và N. Gọi V 1  là thể tích của khối chóp S.AMPN. Tìm giá trị nhỏ nhất của V 1 V ?

A.  1 8

B.  2 3

C. 3 8

D. 1 3

CT
16 tháng 1 2018 lúc 6:19

Đáp án D

Gọi G là trọng tâm tam giác S A C ⇒ M N  đi qua G

Với x = S N S B ; y = S M S D  

 

Vậy V 1 V  đạt giá trị nhỏ nhất bằng  1 3

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết