Bài 1: Đại cương về đường thẳng và mặt phẳng

SK

Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC.

a) Tìm giao điểm M của CD và mặt phẳng (C'AE)

b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)

H24
31 tháng 3 2017 lúc 10:02

a) Trong (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE).

b)
Do M = DC ∩ (C'AE) nên  M ∈ (SDC),.
Trong  (SDC) : MC' ∩ SD = F.
Ta có:
\(\left(C'AE\right)\cap\left(SDC\right)=FC'\)
\(\left(C'AE\right)\cap\left(SAD\right)=AF\)
\(\left(C'AE\right)\cap\left(ABCD\right)=AE\)
\(\left(C'AE\right)\cap\left(SBC\right)=C'E\)

Vậy thiết diện là AEC'F.

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
PD
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
NN
Xem chi tiết
TP
Xem chi tiết
SK
Xem chi tiết
TP
Xem chi tiết
LP
Xem chi tiết