PB

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Cạnh bên SA vuông góc với đáy và S B D = 60 ° . Tính khoảng cách giữa hai đường thẳng ABSO

A.  a 5 2

B.  a 2 2

C.  a 2 5

D.  a 5 5

CT
9 tháng 2 2019 lúc 9:30

Gọi E, F lần lượt là trung điểm của AD, BC thì AB / / EF ⇒  AB / / (SEF) 

 

Dựng   A H ⊥ S E

Ta thấy: FE / / AB, A B ⊥ ( S A D ) ⇒ F E ⊥ ( S A D ) ⇒ F E ⊥ A H  

Mà A H ⊥ S E nên A H ⊥ ( S E F ) ⇔ d ( A , ( S E F ) ) = A H  

ABCD là hình vuông cạnh a nên B D = a 2  

Dễ dàng chứng minh được ∆ S A B = ∆ S A D c . g . c ⇒ S B = S D  

Tam giác SBD cân có S B D = 60 ° nên đều ⇒ S D = B D = a 2  

Tam giác SAD vuông tại A có S A = S D 2 - A D 2 = 2 a 2 - a 2 = a  

Tam giác SAE vuông tại A

Do đó

Chọn đáp án D.

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết