Chương 3: VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

NH

Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA vuông góc với mặt phẳng đáy, SA = \(a\sqrt{2}\), góc giữa đường thẳng SC và mặt phẳng đáy bằng 45o. Gọi M là trung điểm của cạnh AB. Tính theo a khoảng cách h giữa hai đường thẳng DM và SB.

Help me!!!!

Gấp lắm ạ

NL
19 tháng 1 2021 lúc 12:49

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}=45^0\Rightarrow AC=SA=a\sqrt{2}\)

\(\Rightarrow AB=a\)

Gọi N là trung điểm SA \(\Rightarrow NM||SB\Rightarrow SB||\left(DMN\right)\)

\(\Rightarrow d\left(DM;SB\right)=d\left(SB;\left(DMN\right)\right)=d\left(B;\left(DMN\right)\right)\)

Mà M là trung điểm AB \(\Rightarrow d\left(B;\left(DMN\right)\right)=d\left(A;\left(DMN\right)\right)\)

Từ A kẻ AH vuông góc DM \(\Rightarrow DM\perp\left(NAH\right)\)

Trong mp (NAH), từ A kẻ \(AK\perp NH\Rightarrow AK=d\left(A;\left(DMN\right)\right)\)

\(\dfrac{1}{AH^2}=\dfrac{1}{AM^2}+\dfrac{1}{AD^2}\Rightarrow AH=\dfrac{AM.AD}{\sqrt{AM^2+AD^2}}=\dfrac{a\sqrt{5}}{5}\)

\(\dfrac{1}{AK^2}=\dfrac{1}{AN^2}+\dfrac{1}{AH^2}\Rightarrow AK=\dfrac{AN.AH}{\sqrt{AN^2+AH^2}}=\dfrac{a\sqrt{7}}{7}\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DN
Xem chi tiết
HD
Xem chi tiết
HK
Xem chi tiết
LE
Xem chi tiết
ND
Xem chi tiết
VN
Xem chi tiết
LE
Xem chi tiết
DN
Xem chi tiết