PB

Cho hình chóp S.ABCD có đáy ABCD là hình vuông. Mặt bên SAB là tam giác đều có đường cao AH vuông góc với (ABCD). Gọi  là góc giữa BD và (SAD). Tính sin α

A. sin  α =  6 4

B. sin  α  =  1 2

C. sin  α  =  3 2

D. sin  α  =  10 4

CT
6 tháng 11 2017 lúc 8:22

Đáp án A

Gọi N là trung điểm AD suy ra HN // BD.

Góc giữa BD và    (SAD) bằng góc giữa HN và (SAD).

Ta có ADSH, ADAB suy ra AD (SAB) .  Trong mặt phẳng (SAB) kẻ HKSA nên ta suy ra ADHK và HK   (SAD) . vậy góc giữa HN và (SAD) là góc HNK.

Gọi cạnh của hình vuông là a

Ta tính được HN =  a 2 2 . Xét tam giác vuông SHA vuông tại H ta có 

Xét tam giác vuông HNK vuông tại K ta có 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết