Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A ⊥ A B C D , S A = x . Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau góc 60 ° .
A. x = 3 a 2 .
B. x = a 2 .
C. x = a .
D. x = 2 a .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ A B C D , S A = x . Xác định x để hai mặt phẳng (SBC) và (SDC) tạo với nhau một góc bằng 60 °
A. x = a 3
B. x = a
C. x = a 3 2
D. x = a 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a. Cạnh bên SA vuông góc với (ABCD) và SA = x. Tìm x để (SBC) hợp với (SCD) một góc 60 ° .
A. x = 3 a
B. x=2a
C. x=3a
D. x=4a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=3a, AD=2a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho AH=2HB. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Khoảng cách từ A đến mặt phẳng (SBC) là:
A. 2 a 39 13
B. 3 a 39 13
C. a 39 13
D. 6 a 39 13
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a và SA = x . Giả sử S A ⊥ A B C và góc giữa hai mặt (SBC) và (SCD) bằng 120 o . Tìm x
A. a
B. 2a
C. a 2
D. 3 a 2
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = AD = 2a, CD = a. Gọi I là trung điểm của cạnh AD, biết hai mặt phẳng (SBI); (SCI) cùng vuông góc với đáy và thể tích khối chóp S. ABCD bằng 3 15 a 3 5 . Tính góc giữa hai mặt phẳng (SBC); (ABCD).
A. 600
B. 300
C. 360
D. 450
Cho hình chóp S.ABCDcó đáy ABCD là hình vuông cạnh a, S A ⊥ A B C D và S A = x . Tìm giá trị của x để góc giữa hai mặt phẳng (SBC) và (SCD) bằng 60 0 .
A. x = 2 a .
B. x = 3 a 2 .
C. x = a 2 .
D. x = a .
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Hình chiếu vuông góc của S trên đáy ABCD trùng với trung điểm AB. Biết A B = a , B C = 2 a , B D = a 10 . Góc giữa hai mặt phẳng (SBD) và đáy là 60 ° . Tính d là khoảng cách từ A đến mặt phẳng (SCD) gần với giá trị nào nhất trong các giá trị sau đây ?
A. 0,80a
B. 0,85a
C. 0,95a
D. 0,98a
Cho hình chóp S.ABCD đáy ABCD là hình thang vuông tại A và D, AD=BA=2a, CD=a, góc giữa hai mặt phẳng (SBC) và (ABCD) bằng 60 ° . Gọi I là trung điểm của cạnh AD. Biết hai mặt phẳng (SBI) và (SCI) cùng vuông góc với mặt phẳng (ABCD). Thể tích khối chóp S.ABCD tính theo a bằng
A. 3 a 3 15 5
B. 3 a 3 15 15
C. a 3 15 5
D. 3 a 3 5 15