PB

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, S A = 2 a 2 , tam giác SAC vuông tại S và nằm trong mặt phẳng vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.ABCD

A.  V = 6 a 3 12

B.  V = 6 a 3 3

C.  V = 6 a 3 4

D.  V = 2 a 3 6

CT
15 tháng 7 2018 lúc 6:29

 

Vẽ S H ⊥ A C  tại H.

Khi đó: ( S A C ) ⊥ ( A B C D ) ( S A C ) ⊥ ( A B C D ) = A C S H ⊂ ( S A C ) S H ⊥ A C

⇒ S H ⊥ ( A B C D ) ⇒ V = 1 3 S H . S A B C D

Theo đề ∆ S A C  vuông tại S nên ta có:

S C = A C 2 - S A 2 = 6 a 2

và  S H = S A . S C A C

= 2 a 2 . 6 a 2 2 a = 6 a 4

Vậy  V = 1 3 S H . S A B C D = 6 a 3 12

Chọn đáp án A.

 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết