PB

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc A B C ^ = 60 ° , cạnh bên SA=a và vuông góc với mặt đáy. Tính bán kính R của mặt cầu ngoại tiếp tứ diện S.ACD

A.  R = a 5 2

B.  R = a

C.  R = a 7 12

D.  R = a 2

CT
15 tháng 8 2019 lúc 11:25

Ta có A D C ^ = A B C ^ = 60 ° , suy ra tam giác ADC là tam giác đều cạnh a. Gọi N là trung điểm cạnh DC, G là trọng tâm của tam giác ABC. Ta có  A N = a 3 2 ;   A G = a 3 3

Trong mặt phẳng (SAN), kẻ đường thẳng Gx//SA, suy ra Gx là trục của tam giác ADC.

Gọi M là trung điểm cạnh SA. Trong mặt phẳng (SAN) kẻ trung trực của SA cắt Gx tại I thì IS=IA=ID=IC nên I chính là tâm mặt cầu ngoại tiếp tứ diện S.ACD. Bán kính R của mặt cầu bằng độ dài đoạn IA.

Trong tam giác AIG vuông tại G, ta có:

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết