PB

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = a, AD = 2a; SA vuông góc với đáy ABCD, SC hợp với đáy một góc α và tan α = 10 5 . Khi đó, khoảng cách từ điểm B đến mặt phẳng (SCD) là:

A.  2 a 3 3

B.  2 a 3

C.  a 3 3

D.  a 3

CT
28 tháng 4 2019 lúc 9:01

Đáp án A

Phương pháp: Cách xác định góc giữa đường thẳng và mặt phẳng:

Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).

Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.

Cách giải: ABCD là hình chữ nhật 

Vì SA ⊥ (ABCD) nên (SC;(ABCD)) = (SC;AC) =  S C A ^

Ta có: AB//CD, CD ⊂ (SCD) => d(B;(SCD)) = d(A;(SCD))

Kẻ AH ⊥ SD, H ∈ SD

Ta có: 

Mà AH ⊥ SD => AH ⊥ (SCD) => d(A;(SCD)) = AH

Tam giác SAD vuông tại A,

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết