\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\) (1)
Mà \(BD\perp AC\) (2 đường chéo hình vuông) (2)
(1);(2) \(\Rightarrow BD\perp\left(SAD\right)\)
Lại có \(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)
\(SA\perp\left(ABCD\right)\Rightarrow AD\) là hình chiếu vuông góc của SD lên (ABCD)
\(\Rightarrow\widehat{SDA}\) là góc giữa SD và (ABCD)
\(tan\widehat{SDA}=\frac{SA}{AD}=\frac{a\sqrt{3}}{a}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)