PB

Cho hình chóp S.ABCD có A B C ⏜ = A D C ⏜ = 90 ∘ , cạnh bên SA vuông góc với mặt phẳng (ABCD), góc tạo bởi SC và mặt phẳng đáy bằng 60 ∘ ,   C D = a  và tam giác ADC có diện tích bằng a 2 3 2 . Diện tích mặt cầu S m c ngoại tiếp hình chóp S.ABCD là

A. S m c = 16 π a 2

B.  S m c = 4 π a 2

C.  S m c = 32 π a 2

D.  S m c = 8 π a 2

CT
7 tháng 1 2018 lúc 6:17

Đáp án A

Tam giác ADC vuông tại D  ⇒ S Δ A D C = 1 2 . A D . C D = a 2 3 2

  ⇒ C D = a 3 ⇒ A C = A D 2 + C D 2 = a 2 + a 3 2 = 2 a .

Vì tứ giác ABCD có A B C ⏜ = A D C ⏜ = 90 ∘ ⇒ A B C D  là tứ giác nội tiếp đường tròn tâm O với O là trung điểm của AC  ⇒ R A B C D = A C 2 = a .

Và  S A ⊥ A B C D ⇒ S C ; A B C D ⏜ = S C ; A C ⏜ = S C A ⏜ = 60 ∘

Tam giác SAC vuông tại A ⇒ tan S C A ⏜ = S A A C ⇒ S A = 2 a 3 .

Suy ra bán kính mặt cầu cần tính là:

R = R 2 A B C D + S A 2 4 = 2 a ⇒ S m c = 16 π a 2 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết