PB

Cho hình chóp S.ABC, M và N là các điểm thuộc các cạnh SA và SB sao cho MA= 2SM, SN = 2NB,  là mặt phẳng qua MN và song song với SC. Kí hiệu (H1) và (H2) là các khối đa diện có được khi chia khối chóp S.ABC bới mặt phẳng  trong đó (H1) chứa điểm S, (H2) chứa điểm A; V1 và V2 lần lượt là thể tích của (H1) và (H2). Tính tỉ số V 1 V 2

A.  4 3

B. 5 4

C. 3 4

D. 4 5

CT
14 tháng 12 2019 lúc 7:44

Chọn D.

Mp ( α ) qua MN và song song với SC. Mp ( α ) cắt BC và cắt AC tại P và Q ta có:

NP // SC nên   Ta có: MN, PQ, AB đồng quy tại E.

Áp dụng định lí Mennelauyt trong tam giác SAB, ta có:

Áp dụng định lí Menelauyt trong tam giác ABC ta có: 

Vậy 

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết