PB

Cho hình chóp S.ABC có tam giác ABC vuông cân tại B, AC = a 2 , mặt phẳng (SAC) vuông góc với mặt đáy (ABC). Các mặt bên (SAB), (SBC) tạo với mặt đáy các góc bằng nhau và bằng 60 ° .Tính theo a thể tích V của khối chóp S. ABC.

A.  V = 3 a 3 2

B.  V = 3 a 3 4

C.  V = 3 a 3 6

D.  V = 3 a 3 12

CT
26 tháng 3 2019 lúc 14:21

Đáp án D

Gọi H là hình chiếu của S trên A C ⇒ S H ⊥ A B C  

Kẻ  H M ⊥ A B M ∈ A B , H N ⊥ A C N ∈ A C

Suy ra S A B ; A B C ^ = S B C ; A B C ^ = S M H ^ = S N H ^ = 60 °  

⇒ ∆ S H M = ∆ S H N ⇒ H M = H N ⇒ H  là trung điểm của AC

Tam giác SHM vuông tại H, có tan S M H ^ = S H H M ⇒ S H = a 3 2  

Diện tích tam giác ABC là S ∆ A B C = 1 2 . A B . B C = a 2 2  

Vậy thể tích cần tính là V = 1 3 . S H . S A B C = 1 3 . a 3 2 . a 2 2 = a 3 3 12

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết