PB

Cho hình chóp S.ABC có độ dài các cạnh: S A = B C = x ,    S B = A C = y ,    S C = A B = z thỏa mãn x 2 + y 2 + z 2 = 12 . Tính giá trị lớn nhất của thể tích khối chóp S.ABC.

A. 2 3

B.  8 3

C.  2 2 3

CT
19 tháng 10 2017 lúc 10:25

Đáp án C

Áp dụng công thức tính thể tích tứ diện có hai cặp cạnh đối bằng nhau:

V S A B C = 1 6 2 x 2 + y 2 − z 2 y 2 + z 2 − x 2 z 2 + x 2 − y 2 ≤ 1 6 2 x 2 + y 2 − z 2 + y 2 + z 2 − x 2 + z 2 + x 2 − y 2 3 3 = 1 6 2 x 2 + y 2 + z 2 3 3 = 1 6 2 12 3 3 = 1 6 2 .8 = 2 2 3

Như vậy V S A B C  lớn nhất bằng 2 2 3  khi: x=y=z=2

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết