PB

Cho hình chóp S.ABC có đáy ABCD là hình thang vuông tại A và B A B = B C = a ,   A D = 2 a . SAvuông góc với mặt phẳng đáy, SA=a Gọi M,N lần lượt là trung điểm của SB và CD Tính cosin góc giữa  M N   v à   S A C .

A. 1 5

B. 3 5 10

C. 55 10

D. 2 5

CT
27 tháng 3 2018 lúc 14:55

Đáp án là  C.

Ta dễ chứng minh được tam giácACD  vuông tại C, từ đó chứng minh được CN vuông góc với mặt phẳng (SAC) hay C là hình chiếu vuông góc của N trên (SAC). Đường thẳng MN cắt mặt phẳng (SAC)   tại J xác định như hình vẽ. Suy ra góc giữa MN và (SAC) là góc NJC  .

IN là đương trung bình trong tam giác ACD suy ra IN=a, IH là đường trung bình trong tam giác ABC suy ra I H = 1 2 B C = a 2 . Dựa vào định lí Talet trong tam giác MHN ta được I J = 2 3 M H = 2 3 . 1 2 S A = 1 3 S A = a 3 . Dựa vào tam giác JIC  vuông tại I  tính được J C = 22 6 .

Ta dễ tính được C N = a 2 2 , J N = a 10 3  .

Tam giác NJC vuông tại C nên cos N J C ^ = J C J N = 55 10 .

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết