PB

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B. Biết SA vuông góc với mặt phẳng (ABC), A B = a , B C = a 3 , S A = a . Một mặt phẳng α  qua A vuông góc SC tại H và cắt SB tại K. Tính thể tích khối chóp S.AHK theo a

A.  V S . A H K = a 3 3 20

B.  V S . A H K = a 3 3 30

C.  V S . A H K = a 3 3 60

D.  V S . A H K = a 3 3 90

CT
3 tháng 6 2019 lúc 2:02

 

 

 

 

 

 

Ta có A K ⊥ S C A K ⊥ α A K ⊥ B C B C ⊥ S A B  

Suy ra A K ⊥ S B C ⇒ A K ⊥ S B .

Vì ∆ S A B  vuông cân tại A nên K là trung điểm của SB. Ta có

V S . A H K V S . A B C = S A . S K . S H S A . S B . S C = S H 2 S C  

Ta có

A V = A B 2 + B C 2 = 2 a S V = A C 2 + S A 2 = a 5 . 

Khi đó S H S C = S H . S C S C 2 = S A 2 S C 2 = 1 5  

Suy ra V S . A H K V S . A B C = S H 2 S C = 1 10  

Mặt khác V S . A B C = 1 3 S A . 1 2 A B . B C = a 3 3 6  Vậy  V S . A H K = a 3 3 60

Đáp án C

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết