PB

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A , A B C ^ = 30 ° ,  tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính khoảng cách h từ điểm C đến mặt phẳng (SAB).

A.  h = 2 a 39 13

B.  h = a 39 13

C.  h = a 39 26

D.  h = a 39 52

CT
27 tháng 8 2017 lúc 14:46

Đáp án B.

Gọi H là trung điểm của BC khi đó S H ⊥ B C  do S B C ⊥ A B C ⇒ S H ⊥ A B C  

Lại có: C B = 2 C H ⇒ d C ; S A B = 2 d H ; S A B

Dựng H E ⊥ A B H F ⊥ S E ⇒ d H = H F  

Mặt khác H E = A C 2 = 1 2 B C . sin A B C ^ = a 4 ; S H = a 3 2  

Do đó H F = S H . H E S H 2 + H E 2 = a 39 26 ⇒ d c = a 39 13

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết