PB

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi B 1 , C 1  lần lượt là hình chiếu của A trên SB, SC. Tính bán kính mặt cầu đi qua năm điểm A,B,C, B 1 , C 1 .

 

A.  a 3 2

B.  a 3 3

C.  a 3 4

D.  a 3 6

CT
20 tháng 11 2019 lúc 2:06

Đáp án B.

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC ⇒ I A = I B = I C   (1).

Ta có ∆ S A C = ∆ S A B ⇒ A B 1 = A C 1 . Từ đây ta chứng minh được B 1 C 1 / / B C .

Gọi M là trung điểm của B C ⇒ B C ⊥ S A M ⇒ B 1 C 1 ⊥ S A M .

Gọi H = S M ∩ B 1 C 1 ⇒ H B 1 M B = H C 1 M C , do M B = M C  nên H B 1 = H C 1  

Mặt phẳng (SAM) đi qua trung điểm H của B 1 C 1  nên B 1 C 1 ⊥ S A M nên (SAM) là mặt phẳng trung trực của B 1 C 1 . Do I ∈ A M ⊂ S A M  nên I B 1 = I C 1  (2).

Gọi N là trung điểm của AB, suy ra A B ⊥ I N S A ⊥ I N ⇒ I N ⊥ S A B .

Tam giác A B B 1  vuông tại B 1  có N là trung điểm của AB nên N A = N B 1 = 1 2 A B .

Như vậy ta có các tam giác vuông sau bằng nhau

∆ I N A = ∆ I N B = ∆ I N B 1 ⇒ I A = I B = I B 1  (3).

Từ (1), (2) và (3) suy ra 5 điểm A,B,C, B 1 , C 1  cùng nằm trên mặt cầu tâm I, bán kính R = I A = 2 3 . a 3 2 = a 3 3  (do ABC là tam giác đều và I là tâm đường tròn ngoại tiếp ⇒  I cũng là trọng tâm tam giác ABC).

Bình luận (0)

Các câu hỏi tương tự
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết